
ESSPI: ECDSA/Schnorr Signed Program Input for BitVMX

Sergio Demian Lerner∗ 1,2, Martin Jonas†1, and Ariel Futoransky‡ 1

1Fairgate Labs
2Rootstock Labs

Abstract

The BitVM and BitVMX protocols have long relied on inefficient one-time signature (OTS)
schemes like Lamport and Winternitz to sign program inputs. These schemes exhibit significant
storage overheads that hinder their practical application. This paper introduces ESSPI, an optim-
ized method that utilizes ECDSA / Schnorr signatures to sign the input of the BitVMX program.
With Schnorr signatures we achieve an optimal 1:1 data expansion, compared to the current known
best ratio of 1:200 based on Winternitz signatures. To accomplish this, we introduce 4 innovations
to BitVMX: (1) a modification of the BitVMX CPU, adding a challengeable hashing core to it,
(2) a new partition-based search to detect fraud during hashing, (3) a new enhanced transaction
DAG with added data-carrying transactions with a fraud-verifying smart-contract, and (4) a novel
timelock-based method for proving data availability to Bitcoin smart contracts. The enhanced
BitVMX protocol enables the verification of uncompressed inputs such as SPV proofs, NiPoPoWs,
or longer computation integrity proofs, such as STARKs.

1 Introduction

Several schemes exist today to optimistically verify Bitcoin computations, such as BitVM2 [1, 2],
BitVMX [3], SNARKnado [4], and BitSNARK [5]. From these, BitVMX stands out for being the
most efficient in terms of onchain cost of dispute, the simplicity of its design, and the generality of
the programs it can run without relying on SNARKs. One of the key limitations of BitVMX is that
program inputs need to be signed with inefficient OTS schemes such as Lamport or Winternitz. The
Winternitz scheme, which is the most efficient of the two, requires on average 25 witness bytes (or
vbytes [6]) per signed bit. Unlike standard schemes like ECDSA or Schnorr, which have constant size
signatures, Lamport/Winternitz signatures and their public keys grow proportionally with the size of
the data to be signed. One of the key open questions related to BitVM protocols is whether there is a
more efficient method to sign a BitVM program input. Although the advantage is less significant for
BitVM2 that only accepts 300-byte SNARK proofs as input and consumes megabytes in midstates, it
is highly relevant to generic verification protocols such as BitVMX that can check not only SNARKs
but also larger proofs produced by Nova (∼10 Kbytes) or STARK (∼80 Kbytes). Last, with public-key
signed program inputs, BitVMX programs can verify uncompressed inputs, such as BLS signatures for
payment channels or NiPoPoWs inputs for bridges.

The next question is: Can we use a standard signature scheme to sign the program input, benefiting
from a constant short signature? Using a standard number-theoretic public-key scheme would not
only reduce the on-chain footprint, but also avoid storing and transferring the many one-time public

∗sergio@fairgate.io
†martin.jonas@fairgate.io
‡futo@fairgate.io

1

mailto:sergio@fairgate.io
mailto:martin.jonas@fairgate.io
mailto:futo@fairgate.io


keys required by current BitVM protocols. The benefit is even greater when the BitVMX protocol is
extended to n parties, because the number of one-time public keys needed increases quadratically with
n.

In this paper, we positively answer all these previously open questions with a new variant of the
BitVMX: ESSPI. The main trick in ESSPI is to use Bitcoin transactions to carry the program input as
payload. We sign the hash of the program input twice, once with a public-key scheme and another time
with Winternitz, and we prove the equivalence of these two signatures in a second BitVMX instance.
This solves the problem of verifying the program input authenticity in the BitVMX CPU. However,
because the Winternitz signature only signs the hash of the input, and not every input bit, it creates
a new problem: ensuring input data availability. Although embedding signed data in the blockchain
can be used to prove data availability and data authenticity to the full nodes, we still need to build a
proof mechanism to convince a BitVMX smart contract of data availability. We present another trick
to prove the availability of a transaction to a predefined smart contract where the transaction ID is
unknown to the smart contract at the time of creation.

Figure 1: The method (a) to authenticate the program input used in the current version of the BitVMX
protocol requires long Winternitz public keys and publishes an encoded version of the full program input
along the signature resulting in long transaction witnesses. The improved method (b) authenticates
the input using a hash digest but does not prove the program input data availability because it doesn’t
publish the program input inside the witness, only its short digest.

The paper is organized as follows. The first section discusses the main problem: how to provide public-
key-authenticated data to be used as program input for the BitVMX protocol. The next section lists
different ways to use Bitcoin as an efficient data availability layer for large data chunks using standard
transactions. In the last section, we show how to build DA proofs specifically for the BitVMX protocol.

2



2 Overview of BitVMX

BitVMX is an optimistic proving system that allows the verification of arbitrary computations on
Bitcoin. Using BitVMX, two parties can create a dispute resolution game on-chain, where they take
the respective roles of prover and verifier. The prover can then submit the proof for some arbitrary
computation, while the verifier can challenge the proof in case of disagreement. This proof consists
of the input and final state of a virtual CPU after executing a pre-agreed program. To ensure that
both parties commit to using the BitVMX mechanism, they must both lock some bitcoin as part of
the setup process, creating a UTXO whose spending is restricted by the outcome of the protocol.

The dispute resolution game consists of multiple on-chain rounds where the verifier challenges specific
parts of the data that the prover has provided, and the prover must respond with the requested
information. The game is designed such that if the proof is invalid, the prover will be forced to commit
to conflicting data across different rounds. This results in the prover being unable to respond to
at least one challenge, as no valid transaction could be created satisfying the constraints established
by the previous transaction scripts. Each round has an associated time lock, and if either party
fails to respond within this timeframe, they lose the game, and the other party can claim the funds
previously locked. This type of system is called optimistic because the prover wins after a predefined
time period if the verifier does not challenge the initial proof, leading to almost no interaction with
on-chain transactions. The dispute resolution game is implemented as a directed acyclic graph (DAG)
of interconnected transactions, where BitVMX emulates covenants using transactions presigned by
all the parties involved. A message-linking scheme based on Winternitz signatures ensures that both
parties sign their messages, and relative timelocks are used to force the parties to engage in the game
once it is kicked off. Winternitz signatures are also used to authenticate the input of the program.

One of the distinguishing properties of BitVMX is that it verifies the memory consistency using an
execution step hash chain instead of using memory Merkelization. When the protocol finds a disagree-
ment step in the execution trace where a memory read is challenged, the prover commits to point of
the trace where the memory location was supposedly last written with the read value, and the protocol
is able to determine the correctness of this claim by performing another binary search between these
two points.

3 BitVMX Program Input

Our goal is to authenticate the input of the BitVMX program (signed by the party that provides it)
and prove that it is available to the other parties, so that the verifiers can run the computation locally
and be able to challenge a misbehaving prover. The Schnorr and ECDSA signature schemes would be
excellent choices to sign the program input because of their short signature size. The seemingly simple
task of Schnorr/ECDSA signature verification is difficult in practice due to Bitcoin script limitations.
First, the Bitcoin scripting language does not have an opcode to verify that certain data and signature
provided as a witness verifies against a predetermined public key. This is what CHECKSIGFROMSTACK [7]
does, but it has not been soft-forked into Bitcoin and its future is uncertain.

Second, trying to verify a Schnorr signature with a single program coded using Bitcoin Script is
infeasible. One attempt [8] resulted in a 1.1 GB script, which does not fit into a valid transaction.
ECDSA verification requires even more opcodes.

Third, we cannot use a BitVM protocol to verify the Schorr signature of a message, because we would
need to sign the message and the signature with OTS to encode them as program inputs. Clearly, the
recursive nature of the attempt can only increase the cost.

A way to bypass these problems is to reuse the Bitcoin transaction signing mechanism to sign the

3



program input. This presents two new challenges. First, the program input payload cannot be signed
directly. Instead, the transaction signatures, especially segwit and taptroot signatures, use a hierarch-
ical structure, where the program input can only be inserted in certain spots of this hierarchy, so it gets
referenced only indirectly by multiple nested hashes. We can opt to use pre-segwit P2SH addresses,
avoiding the hierarchical structure, but we are limited to the storage of data in transaction outputs
instead of the witness stack, making program input storage 4 times more expensive in terms of fees,
and reducing the storage capacity 4x.

The second challenge is even harder to solve: the cheapest method to store information on standard
Bitcoin transactions is enveloping, which is the method used by inscriptions. Enveloping involves
performing two connected transactions, one to commit to the data and another to reveal it. It is
easy to force a party to publish a single data-carrying transaction D by pre-creating a transaction K
(Kick-off) having an output that can be consumed by D, but also having an alternative time-locked
spending path in the same output used to punish that party if it does not publish D. To describe
such a scheme, we assume that Alice (publisher or prover) and Bob (receiver or verifier) exchange
signed transactions containing data elements over the blockchain. We use the following labeling for
transactions, signatures, and data elements: an uppercase character indicates the name of the element,
the superscript indicates the party that creates and publishes that element (A for Alice and B for
Bob) the subscript character indicates what other element it is related to. For example, PB

D refers to
a penalization transaction P , issued by Bob, related to the absence of transaction D.

Our data publication scheme is depicted in Figure 2.

Figure 2: Simple Scheme to force publication of Data in Bitcoin

The alternate path goes into the punishment transaction PD. This transaction also consumes a second
output of K that is used to continue or stop the protocol in a transaction EB. The constraint to force
the publication of DA is precreated in K. The data is stored in the program outputs of DA.

Transactions KA, PB
D , and E are pregenerated and cosigned by all parties involved to emulate the

covenants. The inputs that require covenant cosignatures are marked with the word Cov. Covenants
can be implemented with individual signature checks or by a single check derived from a MuSig2 key
aggregation.

Note that this scheme does not work for envelopes. Let us suppose we split the transaction DA

into a commit transaction CA and a reveal transaction RA. Enforcing the publication of the Reveal
transaction RA (which depends on the commit transaction) is tricky, because the involved parties
do not know the commit transaction ID until it is published, so they cannot create the appropriate
time-locked spending paths when the protocol is set up. Figure 3 shows a failed attempt to punish the

4



non-revelation of the transaction RA.

Figure 3: A difficult task: The Punishment transaction PB
R cannot be pre-created because it depends

on the transaction ID of CA

Note that PB
R cannot be pre-created. The opcode OP_CHECKTEMPLATEVERIFY [9] combined with the

opcode OP_CAT [11] and SIGHASH_ANYPREVOUT [10] would solve the problem by letting a presigned trans-
action PR connect to C without knowing its transaction ID. The transaction PB

R could be restricted
to be valid only if it consumes an output from a transaction that, in turn, consumes the first output
of KA, which implies that PB

R is connected to CA. However, these opcodes related to transaction
covenants are not available in Bitcoin.

We now show how to solve all these problems using innovative tools that may also be of interest to
other Bitcoin protocols.

4 Signed Data Availability on Bitcoin

The Bitcoin protocol uses the Schnorr/ECDSA signature schemes to sign transactions, but the trans-
action issuer does not have freedom to store arbitrary data in the transaction, as some fields within a
transaction are syntactically or semantically constrained and not intended for arbitrary use. However,
Bitcoin provides some flexibility for storing arbitrary data in certain fields of the transaction. One of
these fields is the transaction output script. When considering the cost of storing information in a
transaction output script, we must take into account the space of the output itself (which is priced at 4
vbytes per data byte) and its dust cost, which is the minimum amount of bitcoins that the output must
hold to be considered standard. The dust cost in Bitcoin Core is computed based on the serialized size
of the output plus the size of a minimal transaction required to spend it. Currently, this additional
size is not computed exactly, but estimated. Bitcoin Core only considers two cases: spending segwit
and non-segwit outputs. Segwit outputs pay for an additional 67.75 data bytes, while non-segwit ones
pay for an additional 148 data bytes (271 and 592 vbytes, respectively).

We define the expansion factor as the number of vbytes used by transactions per user input byte that
needs to be signed, not taking into account constants. The vbyte count comprises space consumed by
commitments, public keys, script opcodes for signature verification and data encoding/decoding, and
dust costs. The minimum and optimal expansion factor is 1 : 1.

We identified many possibilities to store signed data in a transaction:

5



1. OP_RETURN: Data stored in an output containing an OP_RETURN opcode in its scriptPub.

• Benefit: Easy to implement and to parse.

• Limitation: A standard Bitcoin transaction can only have one OP_RETURN output and the
output can hold a maximum of 80 bytes. This space is not enough to store a SNARK
proof. Storing more data makes the transaction non-standard, but up to 1 megabyte could
be stored in a non-standard transaction. The opcode OP_RETURN outputs do not consume
dust. The approximate expansion factor is 14x.

2. Enveloping: Data pushed into the stack in a scriptPub and surrounded by a skipping conditional
(OP_PUSH 0 / OP_IF / OP_ENDIF). This scriptPub is committed to a P2WSH or P2TR output.
P2TR envelopes have the advantage that their scripts are unconstrained, while P2WSH scripts
are constrained to 10000 bytes. The full script is revealed in a following transaction that consumes
that output.

• Benefit: a standard transaction can store up to 400 kilobytes. A non-standard transaction
could store up to 4 megabytes. Also, a transaction can consume multiple outputs where
each one reveals 400 kilobytes of data, and the data is concatenated afterward. This is
the method used by Bitcoin inscriptions. The cost of publication is low because the data
expansion is close to 1x.

• Limitation: since the script is revealed when the output is spent, we have to use a commit-
reveal mechanism similar to the envelopes used for inscriptions.

3. Annex: Data in Segwit annex.

• Benefit: In theory, this method could provide unbounded space. The cost could be very
low.

• Limitation: The annex is non-standard. It is not forwarded by network nodes.

4. P2WSH Address: Data stored in multiple standard outputs as (un-owned) addresses.

• Benefit: Difficult or impossible to censor.

• Limitation: A P2WSH address can store up to 32 bytes, and an output consumes at least
the dust amount. Considering the dust cost the data expansion is approximately 19x. The
benefit is that we can put many P2WSH addresses in a single transaction, so the prevout
reference (160 vbytes) is amortized over the many outputs. Also a second benefit is that
there will be a single signature consuming the handle.

5. scriptPub with P2PK: Data can be stored directly in P2PK outputs as 64-byte public keys.
P2PK outputs are considered standard by Bitcoin Core, and no semantic check is made on the
content of the public keys while the transactions are in the mempool.

• Benefit: The data expansion factor, considering dust fee, is ∼ 19x.

• Limitations: In the future P2PK outputs may be considered non-standard.

6. scriptPub with bare multisigs: Bare multisigs using up to 3 public keys are standard in
Bitcoin Core (DEFAULT_PERMIT_BAREMULTISIG is true by default).

• Benefit: A bare multisig output can store up to 192 bytes of data, and considering the dust
fee it provides an approximate expansion factor of 13x.

• Limitations: The DEFAULT_PERMIT_BAREMULTISIG flag controls bare multisigs forwarding,
and can be turned off by nodes.

It is clear that the standardness restrictions make storing information in outputs very expensive.

6



Note that we do not consider data publication methods where the data is not covered by the ECDSA/Schnorr
signature, such as storing data in a pre-segwit scriptSig. Those transactions are malleable and do
not provide the authenticity we need. All the methods that store data in output scripts can be com-
plemented with storing an additional byte as the LSB of the output amount, adding an additional
random dust cost.

As mentioned before, it would be superb to have a means to include arbitrary signed data in a trans-
action without affecting the transaction ID. This is what OP_CHECKSIGFROMSTACK does, but it hasn’t
been soft-forked into Bitcoin.

In the following sections, we present two DA methods: the Inclusion-Proof DA and the Timelock-
based DA. The Inclusion-Proof DA method proves that a certain transaction was included in the
canonical Bitcoin blockchain using cumulative work. Timelock-based DA method forces the prover to
sign a transaction before a relative timelock or risks being punished (i.e. loss of BitVMX dispute and
security deposit slashed).

Enveloping is the best method to store data for the Inclusion Proof DA, because proving the existence of
two transactions (commit and reveal) is almost as expensive as proving the existence of one transaction.
It is also best for Timelock-based DA, although it is not possible with the tools defined so far. We
will present the Timelock-based DA using transaction outputs to store the program input to simplify
the explanation, as it requires a single Schnorr signature to be verified. Although using signatures to
store program input data is more efficient, the use of multiple Schnorr signatures forces the need to
verify a SNARK inside BitVMX to prove cheating. Finally, we will show how to use enveloping for
Timelock-based DA, which is optimal.

To summarize, given that the public key of the Schnorr signed data can be provided to all the parties
involved in the BitVMX protocol in advance, a Schnorr signed transaction can be used to broadcast
the input to all participants in a way that:

1. All participants receive the program input data.

2. The input data is signed with one or more predefined public keys known to all participants.

Example 4.1. If a 100 kilobyte STARK proof is split into standard OP_RETURN outputs, it requires
1250 standard transactions each having a single OP_RETURN output, it also requires 1250 output handles
to attach the transactions, and 1250 signatures. If the STARK proof is split into P2WSH addresses,
it requires a single transaction with 3125 outputs. Since a standard transaction cannot accommodate
3125 outputs, but only 2500, it would need to be split into 2 transactions, consuming two handles with
two different signatures. The maximum storage capacity for a single transaction using P2WSH outputs
is 80 kilobytes. If the STARK proof is stored using transaction envelopes, then the whole proof can fit
in scriptPub stored in a single transaction.

Until now we have proved that the program input data is authentic and available to full nodes but we
need to prove it to a smart contract running in Bitcoin, either by creating a non-interactive proof that
can be checked by BitVMX or by other means. In other words, we only need a way to use the signed
data as input of the BitVMX protocol such that using the wrong data during RISC-V computations
can be challenged as easily as Winternitz signed data, and this is achieved by a variation of the BitVMX
protocol we now present.

5 Proving Data Availability to BitVMX

We’ve guaranteed authenticity and availability of the program input to full nodes. Now we want to
prove these two facts to a BitVMX protocol instance. We can prove a transaction has been mined and

7



confirmed by many blocks using an SPV proof, and we rely on the difficulty and cost of mining a hidden
fork. We can also prove it by punishing the prover if they do not publish the program input before
the BitVMX dispute begins using a relative timelock. In this case, we rely on the difficulty and cost of
transaction censorship. These two proofs seem to be based on different crypto-economic assumptions.
However, to allow SPV proof to protect high value, an autonomous system that relies on SPV proofs
must accept and compare proofs with counter-proofs. Since the time to provide counter-proofs must be
bounded, the security of this method also relies on the assumption of non-censorship of transactions.
Since the whole BitVMX protocol also relies on eventual non-censorship, it is acceptable to use simply
the DA method based on timelocks.

Nevertheless, we present two methods to prove data availability: Inclusion-Proof DA (based on the
cost of mining) and Timelock-based DA (based on the cost of censorship)

5.1 Inclusion-Proof DA

The protocol needs to make sure that the verifier has received the input so that it can challenge it.
The standard method is that a certain transaction was included in the blockchain and that it has
been confirmed by a number of headers (or cumulative work). This is often called a SPV proof. An
instance of BitVMX can be used to verify the SPV proof, which could be stateful or stateless, allowing
counter-proofs or not [12]. If the SPV proof is incorrect, Bob can challenge it. We will not go deeper
into the many variants of SPV proofs and will present the simplest possible protocol for comparisons.

To support a SPV proof for DA, we use a two-stage protocol:

1. A first BitVMX instance proves input data availability by verifying the SPV proof. If data
availability is not challenged for a certain time, then the prover has the opportunity to continue
with a second BitVMX instance which actually uses the data proven to exist. The SPV proof
convinces the verifier of the existence of a transaction in the canonical Bitcoin chain. The proof
can be created using a NiPoPoW, a SNARK, a STARK, Nova, or any other argument, but
generally it is compressed with a SNARK because of the high cost of signing program inputs
with an OTS. Assuming the input of the DA proving instance is a SNARK, and this SNARK is
signed by Winternitz OTS, the input consumes approximately 60K vbytes.

2. The second BitVMX instance receives as input a hash of the data proved to be available in the
first instance. This requires signing 32 bytes with the Winternitz OTS, which consumes only 6.4
K vbytes.

The SNARK proof of data availability will contain (as hidden witness) the Merkle Inclusion Proof for
the transaction containing the program input, its block header, and a number of headers confirming
the first one adding up a certain amount of pre-established cumulative work.

Although variants of this method are used by all Bitcoin rollup bridges based on BitVM2 that have
been designed so far (BitVM2 bridge, AlpenLabs’ Strata bridge, and Citrea’s Clementine), it is complex
and requires proof/counter-proof interactivity [13] to reach the desired level of security to protect high
bitcoin amounts.

5.2 Timelock-based DA

We present a novel method to prove data availability and sign program input for BitVM-like protocols.
We start with a simple protocol that uses ECDSA signatures, and later we present a protocol that

8



uses Schnorr signatures. As before, two parties, Alice (prover) and Bob (verifier), exchange signed
transactions containing data elements using the Bitcoin blockchain.

We define User Input (UI) as the input the user program will need to consume to decide the outcome
of the BitVMX protocol (accept or reject the spending). For example, if the user program must check
a SNARK, then the UI is exactly the SNARK proof. The Program Input (PI) will be a message that
can be accessed by the BitVMX CPU and contains the UI, but may also contain additional padding,
header, or footer that should be skipped by the user program. In other words, the program must parse
the PI to extract the UI.

A first kick-off transaction K contains a predefined P2SH output called handle that contains two
spending paths (using OP_IF/OP_ELSE/OP_ENDIF). The first path is used by a transaction DA that
provides the User Input (UI Data).

The second path is used by a cosigned penalization transaction PB
D , and it has a relative timelock.

Consuming the handle with transaction DA before the timelock requires a signature S with a private
key owned by Alice. This key should be used to sign a single instance of the transaction DA and must
not be reused. Figure 4 depicts the DAG of transactions that are used.

Figure 4: The part of the transaction DAG of a BitVMX kick-off that accepts ECDSA-signed UI
embedded in the Program Input

Transactions KA, PB
C , CA, PB

D , KB
1 , and KB

2 are presigned by both participants emulating covenants.
Each cosigned input is indicated in the diagram with the word Cov. PB

C and PB
D are penalization

transactions if Alice does not publish CA or DA, (respectively) before a relative timelock T is enabled.
Once the kick-off transaction KA is published, Bob can punish Alice if Alice does not consume the

9



handle after a time T . The BitVMX protocol kick-off transaction K1 may be delayed a maximum
of T time. Since the handle is only constrained by an OP_CHECKSIGVERIFY, Alice can consume the
handle in any way she wants to avoid being punished by the timelock, but other checks will restrict
the transaction DA. Alice must also publish another transaction CA which commits to the hash of the
Program Input (V ) using an OT signature OA

V . The OTS signature OA
V is verified against a OT public

key established by transaction KA.

The same protocol can be implemented using multiple handles to support multiple data-carrying
transactions, each one providing a part of the program input, but to simplify our presentation, we
restrict ourselves to using a single handle.

Although the BitVMX program could somehow check that the signature is correct as a prelude, we
instead use fraud proofs. A secondary instance of the BitVMX protocol ensures that the signature of
the program input matches the value V committed and signed with the OTS signature OA

V . If the
transaction is malformed, Alice will lose the protocol challenge in the second BitVMX instance. For
example, the transaction DA could contain one OP_RETURN with 80-bytes of payload, multiple outputs
with bare multisigs to store more data, or a non-standard 1 megabyte OP_RETURN payload.

We now formally specify the validations performed by the second BitVMX instance. We define the
message D′ as the signed message for legacy inputs. It is derived from DA using the Bitcoin legacy
P2SH signing rules. The rules remove script data from all inputs other than the one signed and insert
scriptPub into the input where the signature was. The BitVMX Program Input will be exactly D′.
It is the responsibility of the program running on BitVMX to extract the User Input (UI) from D′.
Figure 5 shows how the Program Input is memory-mapped for a transaction carrying an OP_RETURN
with the User Input.

Figure 5: The User Input is embedded in the Program Input, which is memory mapped by a 32-bit
BitVMX CPU.

This instance of BitVMX must be set up to accept up to 1 megabytes of ECDSA-signed program input,
as this is the maximum size of D′ according to the Bitcoin consensus rules.

The value V must match the hash digest L which is the single SHA-256 hash of the message D′. If we
apply a second SHA-256 hash to V , we obtain the "signature hash", which is the value actually signed
by the ECDSA signature S. The signature S is the one provided as scriptSig in the only input of
the transaction DA.

Figure 6 shows how the value V is computed from DA. Alice computes and OT-signs V .

The raw ECDSA sign operation represents the ECDSA signature of a 32 byte value without pre-
hashing, so the diagram shows all hash operations involved. The value L represents the middle state
inside the Bitcoin double-hash operation, while the verifier computes L and will verify that it matches

10



Figure 6: The figure depicts the different transformations that the transaction DA undergoes when
being signed by ECDSA by the Bitcoin Protocol, and how Alice extracts V for OT-signing.

the signature S.

If Bob detects that V provided by Alice doesn’t match L (the single SHA-256 hash of the program
input D′), he launches an instance of BitVMX where he submits as program input the values V (OT
signed by both parties with OA

V and OB
V ), S (alleged raw signature of G, SHA-256 of V , provided by

Alice) signed by Bob (OB
S ) and L (single SHA-256 of D′ calculated by Bob) also signed by Bob (OB

L ).
Bob wins this protocol if he can provide those three values V , S, L such that:

1. V is correctly OT-signed by Alice with OA
V , and V , S and L are correctly OT-signed by Bob

with OB
V , SB

V and LB
V . If this does not hold, the transaction providing the program inputs will

be invalid, as OT signatures are verified by Bitcoin script.

2. S is a valid ECDSA signature of G, the hash of L, where the signature is verified against Alice’s
public key. Here, the program performs a single SHA-256 hash of L to get S to check the raw
signature. If this validation does not hold, then Bob loses the challenge.

3. L is not equal to V . If this is true, then Bob wins, as he could prove fraud.

Figure 7 shows the checks performed by the secondary BitVMX instance. Note that Check 1 is
performed by the Bitcoin script, not the BitVMX program.

Figure 7: The 3 ordered checks performed by the secondary BitVMX instance.

In this new instance of BitVMX, the roles on this new BitVMX are inverted, and it is Alice that
must challenge Bob to prevent Bob from winning. We don’t need to execute SHA–256, just ECDSA
verification and a simple equality check.

It is possible to reuse the same BitVMX instance (DAG and OT public keys) for the user-program and
the ECDSA signature validation if Bob signs a program input bit that forces the instance to switch

11



program code, but for simplicity, we will present the protocol using two BitVMX instances set up for
the two different purposes.

Figure 4 shows how the two existing BitVMX instances (primary and secondary) are connected. After
Alice publishes a general kick-off transaction K, Bob can either continue with the primary BitVMX
protocol (transaction KB

1 ), launch a secondary BitVMX protocol to challenge the signature (transaction
KB

2 ), or punish Alice for not publishing the input (transaction PB
C ).

In this first protocol, we use a legacy address for the handle and get D′ as the program input with
the user input embedded directly. Because our BitVMX design can only check sequentially hashed
program inputs against an OT signed digest V , what the Program Input and V represents depends
on how the User Input is actually hashed. Depending on what type of address is used for the handle,
we get different program input types. The value V will always be the single SHA-256 hash of the PI.
Table 1 shows some of the possibilities, excluding transaction envelopes.

Address type of the handle UI storage Program Input Type
P2TR Script Tapleaf tagged message
P2TR Tx output a CTxOut structure

(referenced by sha_single_output)
P2WSH WitnessScript a scriptPub
P2WSH Tx output a CTxOut structure

(referenced by hashOutputs)
P2SH scriptSig impossible because the scriptSig is not signed
P2SH Tx output a modified transaction

Table 1: The table shows what the Program Input represents depending on the type of address used
for the handle and where the UI is stored within the data transaction.

Like the Lightning Network and many of the BitVM protocol variants, the protocol may be the target
of transaction replacement cycling attacks [14], as the handle can be spent by both Alice and Bob
after the time-lock. Alice can try to avoid being punished by submitting transactions with increasing
fees and switching inputs, Since the value V is committed by the transaction CA, any replacement
transaction Di that does not match the hash V will make Alice lose the dispute. Therefore, Alice can
only use CPFP and change the spent/unspent state of another input to grind the transaction. To solve
this, a special function is added to check the correct format of the transaction D′ to the program that
runs in the first instance, and this function is executed first. The function must check that D′ only
has one input and the required data-carrying outputs.

6 BitVMX for OT-Signed Program Input Hash

Our approach to reduce the program input size relies on OT-signing a hash digest of the program
input data instead of all the program input data. If the hash digest represented the root of a Merkle
tree whose leaves include all the program input data words, then this tree could be directly mapped
to a standard Merklelized RAM [15] [16], as commonly used in many memory-consistency systems for
optimistic CPUs such as Cartesi [17]. In this case, we can map the program input into a specific part
of the RAM, fill the remaining memory with zeros, and build a tree that represents the initial state
of the RAM. No change in the optimistic CPU is required. However, the Bitcoin transaction does not
Merklelize its script data, and the signature covers a sequential hash of the script data. The taptree
does contain Merklelized script data, but only one leaf is made available, so it is not useful for our
purposes.

If Alice OT-signs a RAM Merkle root for the CPU to start with, Bob needs to be able to challenge
Alice in case the OT-signed RAM Merkle root does not contain the program input published in the

12



DA transaction. Bob can use the secondary BitVMX instance to prove fraud by providing a SNARK
or he can challenge Alice to provide a SNARK that proves that no fraud occurred (depending on which
party we prefer to be paying the price of the proof). If Bob does not challenge the root hash, it means
that both parties have agreed that the program input represented by the hash root is correct, and the
optimistic CPU executes as normal. This solution is conceptually simple, but still requires using a
SNARK, which adds more complexity to the system, and may require additional cryptographic and
trust assumptions.

The BitVMX CPU uses a new memory consistency system that minimizes the number of hash oper-
ations required to verify a memory access, but BitVMX does not Merkelize the memory [15]. This
means that either we change BitVMX to support Merklelized memory or we must find a method to
upgrade the BitVMX CPU to verify sequential hashing. We opt for the latter option. To this end, we
present a new CPU mode for BitVMX that enables reading from unsigned program inputs. To verify
the correctness of the unsigned program input, it must be sequentially hashed resulting in the hash
digest V , and we assume that both parties have agreed on the correctness of V (the Schnorr/ECDSA
signature S has not been challenged).

6.1 The ICM CPU Mode

We define a special BitVMX CPU mode called Input Check Mode (ICM) to support the Schnorr-signed
program input. While the CPU is in ICM mode, the executed program will scan the unsigned input,
hashes it, and checks the hash digest against a given hash V .

To specify the ICM mode, we begin with the specification of the BitVMX protocol, as presented in its
white paper.

In the BitVMX white paper, the execution trace is defined as:

tracei = write.addressi∥write.valuei∥writePC.pci

The full trace is defined as:

fulltracei = read1.addressi∥read1.valuei∥read1.lastStepi∥ · · · ∥writePC.pci

The step hash is defined is:
stepHashi = h(stepHashi−1∥tracei)

We define two new buffers in RAM. The Midstate Buffer (MIB) contains 32 bytes, and it represents
either the midstate or last state of the SHA-256 compressor. When the CPU starts, it contains the
first starting state of SHA-256. The MIB is memory-mapped.

The Message Buffer (MEB) is a 64 byte buffer that is also memory-mapped, and the code can freely
read or write this part of the memory.

We change the trace to include the MIB.

We add two new opcodes to the CPU: HASH_UPDATE and HASH_FINAL. The opcode HASH_UPDATE uses
the SHA-256 one-way compression function (OWCF) to hash the MEB into the MIB, continuing from
the prior state of the MIB.

To simplify the hashing core, it is the responsibility of the program code to add the appropriate padding
to the message in the MEB before finalizing the hash with HASH_FINAL, including in the last block the
correct message bit count. Note that the bit count can depend on the unsigned program input as long

13



as the unsigned data is read and parsed after it has been re-written with LSSW, so that there is a write
operation prior to any read of the UPI.

The protocol is simplified if the PI byte count is signed in the SPI. In this case, we can enforce that
the PI has a length that is multiple of 64 bytes, and the padding is straightforward. For the bit count
to be automatically computed, it would need to be tracked by the CPU and stored in some part of the
Midstate Buffer instead of being provided in the last MEB block by the program.

If there can only be a short amount of trailing data after the UI in the PI, then it is also possible to
avoid the computation of the padding in the BitVMX program.

To use this alternative method, we force the UI length to be a multiple of 64 bytes, truncate the hash
computation to the last midstate prior the padding block (which will not contain UI data), and check
V against a midstate instead of to a final SHA-256 hash. The trailing data must be short because to
prove the matching with the script or transaction hash in the secondary BitVMX instance, one party
would need to submit the trailing data, possibly signed with OT signatures.

In the ICM the CPU can use four memory regions:

1. UPI (Unsigned Program Input): Holds the unsigned program input and this data is RAM
memory-mapped

2. SPI (Signed Program Input). This is a normal OT signed program input (by Alice). When using
UPI, this area will be used to store a single hash digest. It is also RAM memory-mapped.

3. MEB (Message Buffer). This is a small 64 byte buffer that is used to store the message input to
the SHA-256 function.

4. MIB (Midstate Buffer). This 32-byte buffer stores the midstate or final state of the SHA-256
function.

There are two kinds of program input: unsigned program input (UPI) and signed program input (SPI).
Both are read-only memory-mapped sections of RAM. For clarity, in this paper we exclude program
inputs OT-signed by the challenger or Schnorr/ECDSA-signed by the challenger, as the protocol can
be easily extended to support them without affecting the protocol soundness.

During ICM the program will only access the MEB, UPI and the CPU registers. There is no need to
enforce access boundaries by the CPU because the prelude code is agreed on by Alice and Bob, and
both can check its correctness.

The number of instructions executed in ICM mode can be fixed (i.e., step 1 million) or specified by
Alice and signed with OTS. The simplest method is to reserve a number of steps for the ICM. The
last instruction of the ICM should be a HASH_FINAL.

To make effective use of the ICM, the parties agree on a prelude program called the ICM program that
linearly hashes the UPI and leaves the hash digest in the Midstate Buffer. However, to hash the UPI,
the ICM program uses the embedded instructions HASH_UPDATE and HASH_FINAL and not a SHA-256
subroutine coded in RISC-V.

Note that we can let normal execution (non-ICM) use the internal hasher embedded in the CPU by
adding an additional opcode HASH_RESET. The program would be able to reset, append, and finalize
the hasher at any time. Also, in non-ICM mode, we do not restrict the position of the hash update
instructions. Adding a hasher to the CPU reduces the size of any program that makes heavy use of
hashing, such as a STARK or Bitcoin SPV proof verifier.

14



6.2 Execution Trace Sections

Both Alice and Bob must agree on the execution of a program having two sections A and B. The
section A is executed in ICM, while the section B is executed normally.

• Section A: The CPU starts in ICM mode. In this section the program uses the Message Buffer,
the Midstate Buffer and the UPI, as previously defined. During this section, the program will
read the UPI, move the bytes to the MEB, perform hashing operations using HASH_UPDATE finalize
hashing with HASH_FINAL, and leave the final result in the MIB. For each word read from UPI,
the program copies it into the MEB and then writes it back into the same UPI address. We
have to make sure that the UPI read and MEB write instructions are back-to-back to be able to
challenge both instructions simultaneously in case the hash chain fails at the read. To simplify
our presentation, we will introduce a single machine instruction to do both. We define a new
machine instruction LSSW (for load/store/store word) that reads a word from UPI memory, writes
it back to the same address and simultaneously writes it to the MEB, with the MEB offset being
the address modulo 64 (the size of the MEB). It will not store the value in any destination
register.

Example 6.1. For example, on a RISC-V BitVMX CPU a normal program that tries to read
the UPI would be read using the lw rd, imm(rs1) instruction, store the result in register rd, and
then move it to the MEB with a sw instruction. Instead, we will use the new instruction LSSW
imm(rs1). For this instruction the BitVMX protocol will generate a trace with the format:

read1.addressi == imm(rs1)

write.addressi == read1.addressi

read1.valuei == word stored in UPI at offset imm(rs1)
write.valuei == read1.valuei

If the word read is not fully contained in the UPI memory area, the instruction will halt the
CPU. When challenging a read/write operation, the LSSW instruction will be also valid as if the
following write trace had been produced:

write.addressi == (read1.addressi − UPI_base_Offset)%64 + MEB_base_offset

No word from the UPI will be read with any other instruction.

• Section B: This is where the CPU goes back to normal. This section can verify a SNARK or
execute any other user-defined program.

As mentioned above, the easiest way to separate each section is to establish a fixed boundary of each
section. If Alice will not use all the steps available in a certain section, she can fill the unused steps
with NOPs.

The point AB (boundary between section A and B) contains the latest state of the state buffer and
the Midstate Buffer, which should match the hash V .

6.3 Disagreement Search Protocol

First, we note that the verifier (Bob) knows V , because it is signed by OTS in the dispute kick-off
transaction KA. Once Bob has access to V , he may realize that V does not match the program input
signed by Schnorr/ECDSA in the Bitcoin transaction DA. On mismatch, Bob will launch an instance

15



of BitVMX to prove fraud and punish the prover (Alice). If Alice has lied about V , she will lose
the dispute in this secondary BitVMX instance. Assuming Bob has not disputed V , the parties can
continue assuming that V is valid and sufficient proof that the signature S exists. Therefore, there is
no need to actually verify S in the BitVMX primary instance.

We expand the trace so that it also includes the MIB and the opcode.

tracei = write.addressi∥write.valuei∥writePC.pci∥MIBi∥opcodei

Note that if the CPU performs many writes per instruction, this structure plus SHA-256 padding may
not fit into a single 64 byte message block, and so the protocol will need to support challenging larger
message hashes, which is possible in Bitcoin Script. Otherwise, we can strip the SHA-256 padding
block, since we are hashing a message with known size. For a 32-bit RISC-V CPU, the trace structure
requires 49 bytes, so it can fit into a single SHA-256 block nicely with standard padding.

First, we assume that Bob disagrees with the last step hash of execution, and he wants to prove fraud
during the execution. Bob knows that there must be a step he agrees with followed by another she
disagrees with, between step 0 and the last step.

6.4 Partition Search

Bob starts partitioning the step hash chain until he finds the first point r where she agrees on step
r − 1 but disagrees on step r. If r > AB, then it means that all the computations performed during
Section A are correct. If the read memory address in step r is in the UPI, then the value must have
been written during section A or B, since the chain is correctly computed up to step r − 1, the read
value must be correct. If Alice shows an incorrect trace value for the step where the memory word
is written, then the hash chain will be challenged as normal in BitVMX (an invalid hash chain slot
cannot produce a valid slot later without breaking the hash function).

Now we must analyze the case where r < AB. This means that Alice is trying to write or read incorrect
values to the UPI during section A. Because Alice has signed V , we know that the state of the MIB
at step AB must be V , if not, then Bob can prove fraud by showing OA

V to a script.

Bob will request the traces for steps r − 1 and r, and he gets the opcode Alice claims is executed at
step r. If the trace for step r − 1 does not match the step hash, he will challenge the hash operation,
as normal in BitVMX. Therefore, we now assume MIBr−1 is correct.

Then, if the instruction is neither LSSW nor HASH_UPDATE it will be challenged with the normal instruc-
tion challenges of BitVMX. If the midstate changes but the opcode is not a hashing one, then Bob can
also challenge it.

If the instruction is a HASH_UPDATE then we take x = r and skip the part where Alice pushishes x.

If the instruction at step r is not HASH_UPDATE then it must be LSSW and we execute the following
sub-protocol. Bob will ask Alice to give the x (after r) which corresponds to the next HASH_UPDATE or
HASH_FINAL opcode, Alice will also respond with a trace for the x step (including MIBx), MEBx, x
itself, and the MIBx signed by Alice. If the OWCF of MEBx from MIBr−1 does not yield MIBx,
Bob will challenge the OWCF and the script will validate the hash. Now Bob is assured that MIBx is
a result of the OWCF that continues the midstate MIBr−1. Alternatively, the hash operation could be
challenged by Alice only if the input/output values signed by Alice do not satisfy the OWCF function.

Note that Bob may detect that the next hash update in her trace is not in step x, but he will play
along with Alice’s response anyway.

16



If MEBx is correct, then Bob will challenge the value written by LSSW to the MEB. Because the
program code will write each word exactly once between hash updates, the written value must be
wrong. Let the offset in MEB written by LSSW be ofs, then Bob will provide r, MEBx[ofs], x (all
co-signed by Alice) to prove that write.valuer ̸= MEBx[ofs].

Now we assume that MEBx is incorrect. In this case MIBx cannot be incorrect, because a previous
script verified that it was computed hashing MEBx, which now we assume to be incorrect. For MIBx

to be correct, then Alice would need to have found a second preimage of the hash compression function.

Now we assume to have an incorrect MIBx and MIBx. MIBx cannot correspond to a future or past
valid midstate of the chain, because the script proved that it used MIBr−1 as the starting state, and
we can assume that Alice cannot find cycles on the hash chain. Therefore, MIBx must correspond to a
state unknown to Bob and not any past or future midstate. Then Bob will challenge the continuation
of the hash. Bob knows that MIBAB is correct, because this must match the value v signed by Alice.
If MIBx is incorrect, then Bob can perform a binary search on the traces between step x and step
AB, until he finds two steps z, z + 1 where MIBz is incorrect but MIBz+1 is correct.

Now Bob will challenge Alice to provide any 64 byte MEB value that can be applied to state MIBz

to produce state MIBz+1, which Alice would not be able to do without breaking the second-preimage
resistance property of the hash function. Figure 8 shows a flowchart with the decisions and actions
Bob takes to win the dispute.

7 Using Enveloping for the Timelock-based DA Scheme

We now describe a two-party BitVMX that allows envelopes to be used to store the program input.
A multi-party version of this protocol requires additional tools. The protocol starts with a kick-off
transaction K that has two outputs: the handle and the timeout signal. The handle is used to publish
the program input. The timeout output is used to penalize Alice and prevent the protocol from
continuing. This is a simplification of the BitVMX protocol, as penalization in BitVMX may also
involve burning or seizing Alice’s security bond. We also leave out of this paper the details on how the
locked bitcoins are given to Alice if she wins the dispute.

The data is published using transaction envelopes with the transactions CA (commit) and RA (reveal).
The transactions KB

1 and KB
2 are the kick-offs of two instances of BitVMX (primary and secondary).

The primary is used for the normal user-defined program, the secondary is used by Bob to prove fraud
in how the transactions CA and RA were built. The transactions KA, KB

1 , KB
2 , and PB

C are pre-created
and they are co-signed with Schnorr when published. The transactions CA, RA and PB

D are created
only when the program input needs to be committed.

7.1 The DA-DAG

We first make V (the script hash signed by Bob) the tapleaf-tagged hash associated with the script U .
Set V = tagged_hash(“TapLeaf”, bytes([leaf_version])+ser_script(U)). According to BIP-340,
the message actually hashed by SHA-256 will be M . Set

M = ⟨tag_hash+ tag_hash+ leaf_version+ compact_size(U) + U⟩

The field tag_hash is the SHA-256 of the string TapLeaf. Figure 9 shows how the User Input is
embedded in the Program Input, which is memory mapped.

This message M will be the Program Input mapped into the CPU memory. The BitVMX program
will see the actual User Input prefixed with a header that ends with an OP_PUSHn instruction and the

17



Figure 8: The flowchart with decisions and actions for Bob to win the dispute on the sequential hashing
of the program input.

User Input length. The program must decode the UI from M to use it. Note that P2WSH and P2TR
addresses are built by hashing the script with a single SHA-256 application, and not two, which is the
standard pre-segwit.

We now present the transaction DAG to enable the use of transaction envelopes. The P2TR address
X specifies a Script Merkle Tree. The taproot internal key for X should be an unspendable Nothing
Up My Sleeve (NUMS) point, i.e., a point with unknown discrete logarithm. The taptree of X must
contain two leaf nodes for two scripts, one checking the signature W against a known public key PKW ,
and having a relative timelock, and another committing to a script U that contains the user’s input to
the program. This leaf stores the tagged hash V .

If the P2TR address X is replaced by a P2WSH address, the verification is simplified as V would be
directly the hash of witnessScript and not a tagged hash, but the script size would be constrained to
10000 vbytes by the Bitcoin consensus rules.

Figure 10 shows the DAG of transactions required to use enveloping as a mechanism to publish the
User Input (UI) inside the Program Input.

18



Figure 9: When using enveloping, the User Input is embedded in the tagged hash, which represents
the Program Input for a 32-bit BitVMX CPU.

Figure 10: The transaction DAG for using enveloping to publish the BitVMX Program Input.

In our previous scheme, we introduced a secondary BitVMX instance ready for Bob to prove that the
signature S was invalid. Now we use a similar secondary BitVMX instance to challenge different kinds
of fraud attempts, not only about the signature, but also about the transaction format. For example,
we must allow Bob to prove that Alice built CA in a way that prevents Bob from penalizing Alice if
she does not publish or RA. Since neither CA nor RA are pre-created, Alice has too many degrees of
freedom on how to build them, but Bob must enforce they are built to such that he can penalize Alice
if:

1. Alice doesn’t publish RA

2. Alice builds RA in a way that prevents Bob from obtaining a lineal hash of the PI from a specific
place in CA.

3. The signature S is malformed.

From now on, we slightly modify the definition of the D′ notation. We use transaction letters with
apostrophes to refer to the associated fixed-size data structures (the signed message) that are actually
signed by Schnorr in taproot addresses.

The value W is a signature of the transaction PB
R associated with a public key owned by Alice. W is

used in the input that spends the continue/stop signal. Let Q1 be a signature of the transaction PB
R

19



that is associated with a public key owned by the verifier for the continue/stop signal, and Q2 be a
signature of the transaction PB

R by the verifier for the output of CA.

All public keys are known at the setup time. Note that the first input of PB
R does not require a

signature from Alice: If the timelock expires, Bob is free to spend it without stopping the protocol,
but this can only go against his interests. In a multiparty (n > 2) setting all verifier’s signatures would
be required.

In the notation used below OW means the OTS signature of W , while sig.W means that the Schnorr
signature W of the current transaction is verified.

The transaction C receives as witness W , and OW . W is the transaction ID of CA, and OA
W is the

OTS of W . It is perfectly possible for a transaction to provide its own transaction ID as a witness
because the transaction ID does not hash the elements of the witness stack.

The transaction CA is signed twice with Schnorr, resulting in the signatures S1 and S2, both stored in
the witness.

We define C ′ as the taproot signed message, which is a message derived from C that is finally signed.
It is hashed with SHA-256 once, and then the digest is signed by the raw Schnorr algorithm. The
signed message varies depending on the transaction input and the sighash flag. For taproot inputs, it
is composed of a tagged hash message with tag = TapSigHash and

data = sighashepoch+ commonsignaturemessage+ extension

and the common signature message is derived from C. Table 2 shows the composition of the common
signature message with the script path spend extension.

20



Field Size Description
hash_type 1 A byte indicating the which inputs/outputs are being signed
nVersion 4 The transaction version field.
nLockTime 4 The transaction locktime field.
sha_prevouts 32 The SHA-256 hash of the txid+vout outpoints for all the inputs included

in the transaction. ∼SIGHASH_ANYONECANPAY
sha_amounts 32 The SHA-256 hash of all the output amount fields for all the inputs

included in the transaction. ∼SIGHASH_ANYONECANPAY
sha_scriptPubkeys 32 The SHA-256 hash all the output scriptPubkeys for all the inputs in-

cluded in the transaction. ∼SIGHASH_ANYONECANPAY
sha_sequences 32 The SHA-256 hash of all the sequence fields for all the inputs included

in the transaction.
sha_outputs 32 The SHA-256 hash of all the outputs in the transaction.

∼(SIGHASH_NONE or SIGHASH_SINGLE)
spend_type 1 A single byte that encodes the extension flag and annex present values.
outpoint (input) 36 The txid + vout outpoint of the input being signed for

SIGHASH_ANYONECANPAY
amount (input) 8 The amount field of the input being signed for SIGHASH_ANYONECANPAY
scriptPubKey (input) variable The scriptPubkey of the input being signed for SIGHASH_ANYONECANPAY
nSequence (input) 4 The sequence field of the input being signed for SIGHASH_ANYONECANPAY
input_index 4 The vin of the input being signed for. ∼SIGHASH_ANYONECANPAY
sha_annex 32 The SHA-256 of the optional annex included at the end of the witness

field.
sha_single_output 32 The SHA-256 of the output opposite the input currently being signed for

SIGHASH_SINGLE
tapleaf_hash 32 The leaf hash for the chosen script you’re using from the script tree.

Script path spend extension (tapscript)
key_version 1 The type of public key used in the leaf script. Script path spend extension

(tapscript)
codesep_pos 4 The opcode position of the last OP_CODESEPARATOR in the leaf script.

Script path spend extension (tapscript)

Table 2: The common signature message with the Script path spend extension.

Due to the additional complexity of the DA-DAG compared with our previous scheme, we describe
it formally. We make use of an auxiliary function to create Taproot addresses and create Winternitz
signature verification scripts:

1. TaprootAddress(list-of-scripts): a P2TR address with a tree containing the given scripts with
unspendable NUMS internal key.

2. OT-CSIGV(M , list of OT-public keys): a script that reads from the stack an encoded input message
M and one or more OT signatures and verifies them against a list of OT public keys. Aborts the
script if any of the verifications fail.

We define a transaction as ⟨list-of-inputs, list-of-outputs⟩ and each input as ⟨prevout, s⟩ where s is
the script leaf used by this input from the ones committed in prevout. Each script s should appear
twice in the DAG, one when committed and another when referenced. We omit versions, amounts,
and nSequence values and taproot paths for simplicity. We additionally use:

• "-" to indicate that we don’t care what inputs/outputs are present in the transaction,

• T.o[i] to indicate the output with index i of T starting from 1.

• Covenant-Check to indicate the checking of two signatures of the transaction, one of each party
either separately or combined with MuSig2.

21



• CSIGV(x) is defined as for the script that pushes value x, followed by CHECKSIGVERIFY.

• CSEQV(x) is defined as the script that pushes value x, and executes CHECKSEQUENCEVERIFY followed
by DROP.

• The sver_ prefix for scripts that verify that a certain variable has been pushed and signed
correctly.

OPKA
W , OPKB

W , OPKA
V , OPKB

V , OPKB
S1, OPKB

S2, OPKB
F , OPKB

X , OPKB
L are the one-time public

keys related to signatures OA
W , OB

W , OA
V , OB

V , OB
S1, O

B
S2, O

B
F , OB

X , OB
L , respectively. The superscript

indicates the party who owns the public key.

PKA
W , PKA

Y , PKA
S1, PKA

S2, PKB
Q1, PKB

Q2 are the Schnorr public keys related to the signatures W , Y ,
S1, S2, Q1, Q2.

The DA-DAG is defined as

script_KA
O1C

A = ⟨CSIGV(PKA
S1), CSIGV(PKA

S2), OT-CSIGV(OPKA
V ), OT-CSIGV(OPKA

W )⟩
script_KA

O1P
B
C = ⟨CSEQV(T ),Covenant-Check⟩

sver_V = ⟨OT-CSIGV(V, ⟨OPKA
V , OPKB

V ⟩)⟩
sver_F = ⟨OT-CSIGV(F,OPKB

F )⟩
sver_EC = ⟨OT-CSIGV(EC,OPKB

EC)⟩
sver_W = ⟨OT-CSIGV(W, ⟨OPKA

W , OPKB
W ⟩)⟩

sver_S1 = ⟨OT-CSIGV(S1, OPKB
S1⟩)⟩

sver_S2 = ⟨OT-CSIGV(S2, OPKB
S2⟩)⟩

sver_C ′ = ⟨OT-CSIGV(C ′, OPKB
C′⟩)⟩

sver_CA = ⟨OT-CSIGV(C,OPKB
C ⟩)⟩

sver_X = ⟨OT-CSIGV(X,OPKB
X⟩)⟩

sver_L = ⟨OT-CSIGV(L,OPKB
L ⟩)⟩

sver_RA′
= ⟨OT-CSIGV(RA′

, OPKB
RA′⟩)⟩

sver_ER = ⟨OT-CSIGV(ER,OPKB
ER)⟩

script_F(1) = ⟨sver_F, sver_EC , sver_W, sver_S1, sver_S2⟩
script_F(2) = ⟨sver_F, sver_C ′, sver_V ⟩
script_F(3) = ⟨sver_F, sver_W, , sver_S1, sver_CA⟩

script_F(4) = ⟨sver_F, sver_RA′
, sver_Y, sver_ER⟩

script_KA
O2K

B
1 = ⟨sver_V ⟩

script_KA
O2P

B
C = ⟨Covenant-Check⟩

script_KA
O2P

B
R = ⟨CSIGV(PKB

Q1), CSIGV(PKB
W )⟩

22



KA = ⟨−, ⟨TaprootAddress(⟨script_KA
O1C, script_K

A
O1P

B
C ⟩),

TaprootAddress(script_KA
O2P

B
C , script_KA

O2P
B
R , script_KA

O2K
B
1 , script_F(i)

for (1 ≤ i ≤ 4))⟩⟩
script_CA

O1P
B
R = ⟨CSEQV(T ), CSIGV(PKA

Q2)⟩
script_U = ⟨CSIGV(PKA

Y ), PUSH 0, IF, PUSH [user input], ENDIF⟩
CA = ⟨⟨⟨KA.o[1], script_KA

O1C
A⟩⟩, ⟨TaprootAddress(⟨script_U, script_CA

O1P
B
R )⟩⟩

RA = ⟨⟨⟨CA.o[1], script_U⟩⟩, ⟨⟩⟩
KB

1 = ⟨⟨⟨KA.o[2], script_KA
O2K

B
1 ⟩⟩,−⟩

KB
2 = ⟨⟨⟨KA.o[2], script_F (i) for any (1 ≤ i ≤ 4)⟩⟩,−⟩

PB
C = ⟨⟨⟨KA.o[1], script_KA

O1P
B
C ⟩, ⟨KA.o[2], script_KA

O2P
B
C ⟩⟩, ⟨⟩⟩

PB
R = ⟨⟨⟨CA.o[1], script_CA

O1P
B
R ⟩, ⟨KA.o[2], script_KA

O2P
B
R ⟩⟩, ⟨⟩⟩

In the Kick-off transaction KB
2 , Bob must select the type of fraud he is trying to prove by specifying

a fraud index (F ), which he OT-signs with OB
F . Each challenge requires consuming a different tapleaf

from the input taproot tree, and each leaf script accepts and checks a specific F value and the OT
signatures of the arguments required by that fraud proof. We now list the challenges that must
be supported to cover all types of fraud that Alice could attempt. Each assumes that the previous
challenge was not required (that is, the challenge number 2 assumes that the transaction C is well
formed).

7.1.1 Invalid Transaction CA

• Program inputs: EC , V , W , S1 and S2. Note that Bob already has OA
W , and OA

V so it only needs
to co-sign them. Here EC represents the actual fields of C that are required to build C ′ and
validate the signatures S1 and S2 (amounts, pubkeys, prevouts, etc.).

• Goal: Bob wants to prove that transaction CA is correctly signed by S1 or S2, but it is malformed
and does not contain a valid P2TR address X, or it contains additional unexpected inputs or
outputs. This is the hardest fraud to prove because we need to prove CA is malformed without
giving a literal description of CA.

• Checks: If the signature S was created with SIGHASH_ALL, the field sha_outputs (32) included
in EC is the SHA-256 of the serialization of all transaction outputs, each one in CTxOut format
(amount,scriptPubKey). Since the number of outputs is not committed in C ′, we need a method
to prove that the transaction CA has an invalid number of outputs without listing all outputs.
We want the program input to be bounded in size and small. We provide three of such methods.
The first method is to prove that the last hashed message block added to the SHA-256 function
while processing sha_outputs contains a bitcount that doesn’t match the expected value. This
can be done by extending a freely-chosen SHA-256 midstate, updating the midstate with the last
padding block and finalizing the hash function so that the result matches the known hash digest.
A match in hash digests proves that the bitcount value present in the padding block is actually
correct and not part of the user message itself. However, this technique requires the additional
cryptographic assumption that SHA-256 is secure from free-start collisions.

The second is based on the fact that during setup, the transaction ID of KA is known to both
parties, also are the input and output amounts of CA and the handle address. The ID can
be embedded into the secondary program code or ROM, or it can be co-signed with the OTS.
Finally, the values W and V are signed by Alice, which means that the program in the secondary

23



BitVMX instance that receives W and V can rebuild both the single input and single output of
CA, hash each one, and compute both the correct sha_outputs and sha_prevouts fields. Then
it can compare those against the ones in C ′. A mismatch in sha_outputs would indicate that the
output of KA has an incorrect address, or there are additional unexpected outputs. A mismatch
in sha_prevouts would indicate there are additional inputs, or Alice has reused the public key
PKA

S in another unrelated transaction signature. The only downside is that the setup phase gets
more complex due to the interdependences.

The third method, the one we have specified in this paper, is based on KA requesting not a single
signature S from Bob, but two signatures S1 and S2, related to different public keys PKS1 and
PKS2 , in the same transaction input. The signature S2 must sign using the SIGHASH_SINGLE
flag, which only stores in sha_single_output the CTxOut hash of a single output that contains
X. The signature S1 must sign without this flag, which stores in sha_outputs the hash of all
outputs. If sha_outputs is equal to sha_single_output then this implies the transaction has
a single output. If an incorrect sighash flag is used for any of the two signatures, then Bob can
easily prove this by showing C ′, without listing the actual outputs, because the hash_type field
indicates this.

Once the single CTxOut hash has been identified, the fraud checking program must check that
the address X is related to a taptree (the taproot scripts Merkle tree) that contains exactly two
leaves with scripts built from W and V that are given as arguments. The leaf related to W must
commit to a script containing a relative timelock and require a single Schnorr signature W related
to PKW (the public key used by W ). The other leaf related to V must match the tapleaf hash V
(V already hashes the tag, script size and script hash). The leaves must be sorted according to
the numerical order of their tagged hashes. The output amount must also be checked against a
pre-established hardcoded value, because the transaction PB

R must consume this exact amount.
It can also be allowed to vary if Alice publishes and signs with a OTS the amount. The program
must also check that the internal key of X is a predefined unspendable NUMS.

The fields present in the Script path spend extension (tapleaf_hash, key_version, codesep_pos)
do not need to be checked because they are already constrained by the scripts in the handle output
of KA.

The unexpected inclusion of the sha_annex can be detected and proven in by exhibiting the
annex hash and wrong spend_type.

Potentially invalid nLockTime and nSequence values or input amounts can also be checked dir-
ectly in this challenge, but invalid values can’t harm Bob, as Bob obtaining CA implies the
transaction has already been mined.

Finally Bob needs to prevent the inclusion of a large number of inputs in CA without listing
those prevouts. We solve this problem in a manner similar to the outputs, by requiring in
K two signatures for CA, S1 and S2 (the same can be reused). The signature S1 must sign
all prevouts SIGHASH_ALL and S2 uses (SIGHASH_ANYONECANPAY | SIGHASH_SINGLE) to sign the
single prevout and a single output related to the input where it is verified. The program can use
S2 to obtain the authenticated fields for the prevout hash and index, and then check with S1

that sha_prevouts matches the hash of the single prevout obtained from S2, and no other input
is involved. Finally, if any signature uses an invalid sighash flag, this can be easily checked by
the program.

7.1.2 Invalid V

• Program inputs: S1, C ′, and V .

• Goal: Bob wants to prove that the program input hash V signed with OA
V does not match the

data signed with Schnorr in signature S1.

24



• Checks: First, the BitVMX program must verify that the signature S1 is valid against C’ provided
by Bob. If not, then Bob loses. The program can then perform one of two equivalent checks.
This first requires Bob to provide X and L. The program can check that X is associated with a
Merkle Tree which has the script hash L on one of the leaves. The value L must be provided
by Bob together with the OT-signed Merkle path of the leaf containing L. The program must
verify this path. From the previous fraud check we know that sha_outputs is correct, and the
output containing X is well formed. Bob wins if this L does not match V. A simpler approach is
to extract L from tapleaf_hash in the script path spend extension which exists in C’. We use
this method.

7.1.3 Invalid W

• Program inputs: W , S1, CA.

• Bob wants to prove that the value W given in CA does not correspond to a valid signature for
transaction PB

R .

• Checks: First, the program checks S1 against the transaction CA provided. If not, the fraud
proof fails. The template of the transaction PB

R is hardcoded in the fraud proof verification
script, including the required public keys and its second input prevout hash and index. However,
since the first input of transaction PB

R depends on the ID of transaction CA, Bob must bring
CA to prove the mismatch in ID for its first input. Even if we need to provide CA (without the
witness) to compute its transaction ID, we already know that CA is small (∼200 vbytes), since
CA is well formed (if not, then the first fraud is used). Once the program builds the transaction
using the the template and the transaction ID of CA, it can check the signature W . Bob wins if
the signature fails to pass the verification.

If we want to protect the protocol against transaction replacement cycling attacks, we can add
a fourth fraud proof. If not, then the sole existence of R proves that the PI has been revealed.
We can either penalize Alice for actually performing an attack or simply penalize Alice for using
a transaction template that may enable a future attack.

7.1.4 Invalid RA

• Program inputs (to prevent grinding by restricting I/O): RA′ , Y , ER. Here RA′ is the signed
message for RA, Y is Alice’s signature of this structure, and ER contains all remaining fields in
the signed message that are required to verify the signature Y of RA.

• Program inputs (to prove that a grinding attack was performed): G1, G2, Y1, Y2.

• Goal: Bob wants to prove that the transaction RA has no additional inputs or outputs that
facilitate its grinding to perform transaction replacement cycling attacks. If we cannot restrict
the outputs of transaction RA (because we need to allow CPFP or the inputs of RA to pay for
transaction fees), then we may at least let Bob prove that Alice performed a grinding attack.

• Checks: To prevent grinding, we assume that the template for RA is fixed and hardcoded. The
program checks that the inputs and outputs are exactly the ones in the template (i.e. one input
and one dummy unspendable output). The program must also check that the signature Y uses
the SIGHASH_ALL flag.

If our protocol needs to allow RA to have additional inputs/outputs, then Bob may want to
prove that Alice has performed a grinding attack. When Bob detects two different transactions
R1 and R2, consuming the same output of DA but with two different signatures Y1 and Y2, Bob
can penalize Alice. Let G1 = SHA-256(R′

1) and G2 = SHA-256(R′
2). All Y1, Y2, G1 and G2 are

program inputs. The program must first check that both signatures are valid with a raw Schnorr

25



verification (no pre-hash), with respect to the hashes G1 and G2, and fraud is proven if the G1

is not equal to G2.

7.2 Security Analysis

Due to the complexities of Bitcoin consensus rules regarding P2SH and P2TP and the reliance of the
security of this protocol in consensus rule details, a formal model covering the whole protocol is out of
the scope of this work, and abstracting out the details to prove soundness would provide a false sense
of security. Therefore we present a list of all attack vectors we have identified and how the protocol
resists them.

1. C_MIS: Alice doesn’t publish transaction C. In this case the handle times-out and Bob can issue
a transaction PC, which stops the protocol and prevents Alice from taking control of the funds.

2. C_INV_OUT: Alice publishes a transaction C with more than one output. Bob can punish Alice
with the invalid transaction CA challenge.

3. C_INV_SH: Alice publishes a transaction C and signs S1 or S2 with invalid sighash flags. Bob can
punish Alice with the invalid transaction CA challenge.

4. C_INV_TT: Alice publishes a transaction C with an output that does not match the expected
taptree. Bob can punish Alice with the invalid transaction CA challenge.

5. C_INV_IK: Alice publishes a transaction CA with an output using a taproot internal key that is
spendable with a Schnorr signature instead of a taptree. Bob can punish Alice with the invalid
transaction CA challenge.

6. C_INV_INP: Alice publishes a transaction CA with more than one input. Bob can punish Alice
with the invalid transaction CA challenge.

7. C_INV_ANNEX: Alice publishes a transaction CA with a sha_annex. Bob can punish Alice with
the invalid transaction CA challenge.

8. R_MIS: Alice does not publish a transaction RA. In this case, the address X has a taptree leaf
that times-out, and Bob can issue a transaction PR, which stops the protocol and prevents Alice
from taking control of the funds.

9. R_INV: Alice publishes a transaction RA that has more inputs, more outputs, or other abnormal
features. This could lead to transaction-replacement cycling attacks. If we want to protect
ourselves against these attack vectors, we can do so by implementing the invalid RA challenge.

10. R_INV_SCRIPT: Alice publishes a script in RA that does not contain the User Input in a block
surrounded by OP_IF/OP_ENDIF as expected or she doesn’t use a single OP_PUSH in between, or
the script contains additional unexpected opcodes or data. The program running in the first
instance of BitVMX will extract the User input from the Program Input and will detect any
anomaly and halt execution.

11. R_INV_V: Alice publishes a program input using transaction envelopes, but the input does not
match the hash digest V. Bob can punish Alice with the invalid V challenge.

12. C_FR: Alice tries to prevent Bob from publishing transaction PB
C by publishing transaction CA,

after the timelock has expired (front-run attack). In this case, Bob can engage in trying to win
over Alice using RBF, or he can simply move forward with the protocol and accept the delay,
since the delay does not cause any financial loss to Bob.

26



13. R_FR: Alice tries to prevent Bob from publishing transaction PB
R by publishing transaction RA,

after the timelock has expired. Same as in the previous attack, Bob simply continues with the
protocol.

This completes the identified attack vectors and shows how the protocol is secured against them.

8 Summary

In this paper, we have presented a new method to sign BitVMX program inputs with ECDSA or
Schnorr signatures, instead of using an OTS scheme. We achieved a 1 : 1 data expansion factor,
making our scheme much more efficient than the current method using the Winternitz scheme, which
has a data expansion factor of 1 : 200. This improvement allows BitVMX to verify uncompressed
SPV proofs or longer computation integrity proofs, such as STARKs. To protect from malformed
or fraudulent data publications we use a secondary BitVMX instance that verifies the correctness of
signatures against the sequential hash of the program input data, then use the Winternitz signature
of the sequential hash to check the data inside the BitVMX CPU. We add a SHA-256 hasher to the
BitVMX CPU to hash the program input and check against the signed hash digest, together with
a new trace partition method to identify an incorrect state transition while hashing the input data.
Our more advanced scheme based on transaction envelopes uses standard Bitcoin transactions and has
minimal overhead, while the changes in the CPU require a low amount of additional transaction space,
and they do not change the dispute protocol worst case.

References

[1] Linus, Robin: "Bitvm: Compute anything on bitcoin." (2023) https://bitvm.org/bitvm.pdf

[2] Linus, Robin, Lukas Aumayr, Alexei Zamyatin, Andrea Pelosi, Zeta Avarikioti, and Matteo Maffei.
"BitVM2: Bridging Bitcoin to Second Layers." (2024): 2024-11. https://bitvm.org/bitvm_
bridge.pdf

[3] Lerner, Sergio Demian, Ramon Amela, Shreemoy Mishra, Martin Jonas, and Javier Álvarez Cid-
Fuentes. "Bitvmx: A cpu for universal computation on bitcoin." arXiv preprint arXiv:2405.06842
(2024). https://arxiv.org/abs/2405.06842

[4] Alpen Labs. "Introducing snarknado." (2024). https://www.alpenlabs.io/blog/
snarknado-practical-round-efficient-snark-verifier-on-bitcoin

[5] Futoransky, Ariel, Yago Guy, Gadi Guy. "BitSNARK & Grail bitcoin rails for unlim-
ited smart contracts & scalability." (2024). https://assets-global.website-files.com/
661e3b1622f7c56970b07a4c/662a7a89ce097389c876db57_BitSNARK__Grail.pdf

[6] Weight units — bitcoin wiki (2021), https://en.bitcoin.it/wiki/Weight_units

[7] OP_CHECKSIGFROMSTACK - – Bitcoin Optech, https://bitcoinops.org/en/topics/op_
checksigfromstack/

[8] BitVM20 Protocol, https://github.com/wanderchicken/bitvm20whitepaper/blob/
f9399f43116852a6a0d6ea9e5a452c230e071a62/BitVM20%20protocol.pdf

[9] Bitcoin covenants, https://bitcoincovenants.com/

[10] SIGHASH_ANYPREVOUT - – Bitcoin Optech, https://bitcoinops.org/en/topics/
sighash_anyprevout/

27

https://bitvm.org/bitvm.pdf
https://bitvm.org/bitvm_bridge.pdf
https://bitvm.org/bitvm_bridge.pdf
https://arxiv.org/abs/2405.06842
https://www.alpenlabs.io/blog/snarknado-practical-round-efficient-snark-verifier-on-bitcoin
https://www.alpenlabs.io/blog/snarknado-practical-round-efficient-snark-verifier-on-bitcoin
https://assets-global.website-files.com/661e3b1622f7c56970b07a4c/662a7a89ce097389c876db57_BitSNARK__Grail.pdf
https://assets-global.website-files.com/661e3b1622f7c56970b07a4c/662a7a89ce097389c876db57_BitSNARK__Grail.pdf
https://en.bitcoin.it/wiki/Weight_units
https://bitcoinops.org/en/topics/op_checksigfromstack/
https://bitcoinops.org/en/topics/op_checksigfromstack/
https://github.com/wanderchicken/bitvm20whitepaper/blob/f9399f43116852a6a0d6ea9e5a452c230e071a62/BitVM20%20protocol.pdf
https://github.com/wanderchicken/bitvm20whitepaper/blob/f9399f43116852a6a0d6ea9e5a452c230e071a62/BitVM20%20protocol.pdf
https://bitcoincovenants.com/
https://bitcoinops.org/en/topics/sighash_anyprevout/
https://bitcoinops.org/en/topics/sighash_anyprevout/


[11] OP_CAT – Bitcoin Optech, https://bitcoinops.org/en/topics/op_cat/

[12] Lerner, S.D. The Security Tradeoffs of Validating Bridges - Fairgate Labs blog, https://www.
fairgate.io/post/1-the-security-tradeoffs-of-validating-bridges

[13] Lerner, S.D., A Review of the BitVM2-based "Linus24" Bridge - Fairgate Labs blog, https:
//www.fairgate.io/post/3-a-review-of-the-the-bitvm2-based-linus24-bridge

[14] Riard A., Replacement Cycling Attacks on the Lightning Network, https://github.com/ariard/
mempool-research/blob/2023-10-replacement-paper/replacement-cycling.pdf

[15] Canetti, R., Riva, B., & Rothblum, G. N. (2011). Practical delegation of computation using
multiple servers. Proceedings of the 18th ACM Conference on Computer and Communications
Security - CCS ’11. doi:10.1145/2046707.2046759

[16] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, M. Walfish. 2013. Verifying compu-
tations with state. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (SOSP ’13). Association for Computing Machinery, New York, NY, USA, 341–357.
https://doi.org/10.1145/2517349.2522733

[17] Cartesi - Linux-powered rollups, https://cartesi.io

28

https://bitcoinops.org/en/topics/op_cat/
https://www.fairgate.io/post/1-the-security-tradeoffs-of-validating-bridges
https://www.fairgate.io/post/1-the-security-tradeoffs-of-validating-bridges
https://www.fairgate.io/post/3-a-review-of-the-the-bitvm2-based-linus24-bridge
https://www.fairgate.io/post/3-a-review-of-the-the-bitvm2-based-linus24-bridge
https://github.com/ariard/mempool-research/blob/2023-10-replacement-paper/replacement-cycling.pdf
https://github.com/ariard/mempool-research/blob/2023-10-replacement-paper/replacement-cycling.pdf
https://doi.org/10.1145/2517349.2522733
https://cartesi.io

	Introduction
	Overview of BitVMX
	BitVMX Program Input
	Signed Data Availability on Bitcoin
	Proving Data Availability to BitVMX
	Inclusion-Proof DA
	Timelock-based DA

	BitVMX for OT-Signed Program Input Hash
	The ICM CPU Mode
	Execution Trace Sections
	Disagreement Search Protocol
	Partition Search

	Using Enveloping for the Timelock-based DA Scheme
	The DA-DAG
	Invalid Transaction CA
	Invalid V
	Invalid W
	Invalid RA

	Security Analysis

	Summary

